什么是数学期望?(小石头来尝试着回答这个问题!)人类在面对复杂事物时,一般不是(也很难)谈论事物的整体,而是抽出事物的某些特征来评头论足!对于随机变量 X 也是如此!数学期望,就是 从 X 中抽出 的 数字特征 之一
什么是数学期望?
(小石头来尝试着回答这个问题!)人类在面对(拼音:duì)复杂事物时,一般不是(练:shì)(也很难)谈论事物的整体,而是抽出事物的某些特征来评头论足!对于随机变量 X 也是如此!数学期望,就是 从 X 中抽出 的 数字特征 之一。
数学期望可以简单的理解为:随机[繁:機]变量的平均值。但要真的说清楚chǔ 它,我们需要从头开始:
世界上,有很多可重复的实验,比如:
掷骰子、抛硬(拼音:yìng)币、记录雪花在操场跑道上的落点、...
这些实验的全部可能结果,实验前已知,比{pinyin:bǐ}如:
抛硬币的结果 = {正,反《练:fǎn》}、雪花落点 = [0, L] (设,跑道长度 = L,宽度忽略《读:lüè》)
但是,实验的具体结果却无法预估,这样的实验称为 随机试验,实《繁体:實》验结果称为 样本,全体《繁:體》可能的实验结果,称为 样[繁体:樣]本空间,记为 Ω。
样本空间 Ω 其(读:qí)实就是 普通的 集合,可以是 有限的,如:硬(练:yìng)币两面,也可以是无限的,如:雪花落点。
我们将 Ω 的子集 A 称为 事件,如果 随机试验的 结果 属于 A,我们则(繁体:則)说 A 发生了,否则说 A 没有发生。又将,随机试验的事件的全体,记为【练:wèi】 F。它是以 Ω 的子集和 为元素 的集族(我们习惯称 以集合为元素的《de》集合 为集族),例如,抛硬币有:
F = {A₀ = ∅ = { }, A₁ = {正}, A₂ = {反}, A₃ = Ω = {正, 反[练:fǎn]}}
虽然,我们不能知道 在每次随机实验中,每一个事件 A 是否发生,但是,我们可以评估 A 发生的可能性。我们用 0 到 1 的 实数表示 这种可能性,0 表示 A 不会发生,1 表示 A 一定会发生,称这个(拼音:gè)数为 A 的 概率。也就是说,对于 F 中的每个事件 A 都有 实数区间 [0, 1] 中的一个数 和 A 对应,这相当于定义了一个 从 F 到 实数区间 [0, 1] 的函数 P: F → [0, 1],我们[men]称 P 为 概率测度,对于每个事件 A , P(A) 就(练:jiù)是 A 的概率。例如,抛硬币 的 概率测度 为:
人们通过长期对随机试验的世界杯观察,发现概率测度 P 有如{拼音:rú}下特性:
- 因为 Ω 包含所有试验结果,所以 实验的结果 一定 属于 Ω,于是每次试验,Ω 事件 一定发生,即:P(Ω) = 1;
- 因为 ∅ 不包含任何元素,所以 实验的结果 一定不属于 ∅,于是每次试验,∅ 事件 一定不发生,即:P(∅) = 0;
- 如果 事件 A 分割为一列子事件 A₁, A₂, ... ,即,A = A₁ ∪ A₂ ∪ ..., A_i ∩ A_j = ∅ (i ≠ j)
则 A 概(练:gài)率 等于 所有 子事件 的 概率lǜ 之(读:zhī)和,即:P(A₁ ∪ A₂ ∪ ...) = P(A) = P(A₁) P(A₂) ...
这称为 可列可(拼音:kě)加性极速赛车/北京赛车。例如,抛硬币中,有:
P(A₁∪ A₂) = P(A₃) = 1 = 1/2 1/2 = P(A₁) P(A₂)
- 事件 Ω 属于 F;
- 如果 事件 A 属于 F,则 A 的补事件,即,A 的补集 Aᶜ = ΩA 也属于 F;
由于 ∅ 是 Ω 的补事件,而 Ω ∈ F,所(suǒ)以 ∅ ∈ Ω,这匹配 P 的 特性 2。
- 如果 事件序列 A₁, A₂, ... 属于 F,则 这些事件的合并事件 A = A₁∪A₂∪ ... 也属于 F;
我们称,满足【读:zú】 以上条件的 集族 F 为 σ 域,F 中的元素 称为 可测{pinyin:cè}集 (事件都是可测集),称 (Ω, F) 为 可测空间,另外,称 (Ω, F, P) 为 概率测度空间。
对于实数集 R,包含 R 中全体开区间的,最小的 σ 域,称{繁体澳门博彩:稱}为 布莱尔集,记为 Bʀ。此定义可以扩展为 R 的任意区间,因此,对于雪花落点,有:
F = Bʟ , (L = [0, L])
两个 可测空间 (Ω, F) 和 (S, M) 之间的映射 f: Ω → S,如果满足 条件:
- 对于任意 B ∈ M,都有 B 的原像集 f⁻¹(B) ∈ F
从 (Ω, F) 到 (R, Bʀ) 的可测映射 g: Ω → R,称为 g 为 可测函数,如果,将 可测[繁体:測]空间 (Ω, F) 升级为 概[练:gài]率空间 (Ω, F, P) 则 可测《繁:測》函数 g 就是 随机变量,记为,X = g。
为什么要这样定(dìng)义随机变量呢?
对于任意实数 x,考虑 实数区(繁:區)间 (-∞, x],因为 (x, ∞) 是 R 的开区间,因此 (x, ∞) ∈ Bʀ,而 (-∞, x] 是 (x, ∞) 的补集,所以 (-∞, x] ∈ Bʀ,这样根据 上面条件,就有[读:yǒu]:
X⁻¹((-∞, x]) = {ω ∈Ω | X(ω) ≤ x } ∈ F
于是 X⁻¹((-∞, x]) 是 一个事件,记为{pinyin:wèi}, X ≤ x, 它的【读:de】概(pinyin:gài)率就是 P(X ≤ x)。
又因 x 的任意性,于是可以定义(繁:義) 函数:
F(x) = P(X ≤ x)
称 F 为 随机{pinyin:jī}变量 X 的 概(gài)率分【练:fēn】布函数。概率分布函数 F 是一个 单调递增函数,并且有:
如果存在{练:zài} 函数 f(x) 使得:
则称,f 是 X 的 概率(读:lǜ)密度函数。
例如,对于 投硬币,函数 X: Ω = {正,反fǎn } → R;正 ↦ 1, 反 ↦ 0,是一《pinyin:yī》个 随机变量,其概率分布函数为阶梯函数:
其概率密度函数为(繁:爲)两个冲激:
绘制成图如(澳门威尼斯人拼音:rú)下:
对于,雪xuě 花落点,概率测度可以定义为:
这个种概率测度称为 勒贝格测度, 函数 X: Ω = [0, 1] → R x ↦ x,是一个 随机变量,其概率分fēn 布函数(繁:數)为:
其概率lǜ 密度函数为:
绘制成图如{rú}下:
关于集合 Ω 中的 任意 事件 A,我们可以定义 A 的指示函数 :
这样以来,投硬币 和 雪花落点 的 随机变量 分别[繁体:彆]可以表示为:
X(x) = 1χᴀ₁(x) 0χᴀ₂(x)
和
X(x) = (1/L)χ_Ω
我们称,这样的,可以用 指示函数 表示的 函数(繁:數),为 简单函数。
设,概率空间 (Ω, F, P) 上的一个 随(suí)机变(繁:變)量 X 是 简单函数,即,可表示为【练:wèi】:
则,对(繁体:對)于任意事件 A ,称,
为 X 在 A 上的 勒贝格积分。如果{练:guǒ} X 不是shì 简单函数,则定义 勒贝格积分 如下:
当 Ω = R , P为勒贝格测度【练:dù】 P([a, b]) = P((a, b)) = P((a, b]) = P([a, b)) = b - a,A = [a, b] 时,勒贝格积分 就是 我们熟悉《xī》的 黎曼积分,即,
我们称 随机变量 X 在 事件 Ω 上的 勒贝格积分 为 X 的 数学期望(pinyin:wàng),记为:
例如,对于 投硬币 和 雪花落点 随机变量 X 的数(繁体:數)学期望分别是:
E(X) = 1P(ᴀ₁) 0P(ᴀ₂) = 1/2
和(读:hé)
E(X) = 1/LP(Ω) = 1/L
◆就离散型随机变量 X 来(繁:來)说, Ω 一定有限【练:xiàn】,不妨设 Ω = {ω₁, ω₂, ..., ω_n},于是{shì} X 可表示为:
X = x₁χ_{ω₁} x₂χ_{ω₂} ... x_nχ_{ω_n}
又设,概《读:gài》率测度为 :
P(ωᵢ) = pᵢ
进而,X 的 数学期(读:qī)望为:
E(X) = x₁P({ω₁}) x₂P({ω₂}) ... x_nP({ω_n}) = x₁p₁ x₂p₂ ... x_np_n = ∑ xᵢpᵢ
这就【练:jiù】是 浙大版《概率论与数【pinyin:shù】理统计》中关于离散型随机变量的数学《繁体:學》期望的定义。
◆而对于连续型随机变量 X,上面的那个 勒贝格(练:gé)积分 的 数学(繁体:學)期望的定义,并不好计算,因此我(pinyin:wǒ)们想办法将其转换为 黎曼积分:
首先,设 g: R → R 是 (R, Bʀ) 上的可测函数,考虑[繁:慮] 随机变(繁体:變)量 X: Ω → R 和 g 的复合函数 gX: Ω → R, (gX)(x) = g(X(x)),显然 gX 依然是(shì)一个 随机变量,所以 其 数学期望 E(gX) 存在。
另一方面,观察【读:chá】 X 的概率分布函数 F(x) = P(X ≤ x): R → [0, 1] ,令:
F([a, b]) = F((a, b)) = F((a, b]) = F([a, b))) = F(b) - F(a);
F(I₁ ∪ I₂ U ... ) = F(I₁) F(I₂) ... (区间序列 Iᵢ 两两不相交(拼音:jiāo));
则有(pinyin:yǒu):
- F(R) = F(( ∞, ∞)) = P(X ≤ ∞) - P(X ≤ -∞) = P(Ω) - P(∅) = 1;
- F(∅) = F([0, 0]) = P(X ≤ 0) - P(X ≤ 0) = 0;
数学家证明了,上面的两个 数学【pinyin:xué】期望相等,即,
并且,当 f(x) 是 F 的概率[pinyin:lǜ]密度函数时,有:
再令,g(x开云体育) = x,则 gX = X,于是我们最终得到,黎曼积分下的《读:de》数学期望公式:
这就是,浙大版《概(gài)率论《繁:論》与数理【拼音:lǐ】统计》中关于连续型随机变量的 数学期望的定义。
好了,到此我们就算将数学期望的概念彻底搞清楚了:
数学期望就是 随机变量liàng X 在 整个样本空间 Ω 上 关(繁体:關)于 概率测度 P 的 勒贝格积分,表征[繁体:徵],随机变量 X 的平均值!
(最后,小石【读:shí】头数(繁:數)学水平有限,出错在所难免,关于各位老师同学批评指正!)
题外话:最近小石头正在[zài]回答一系列关于《范畴论》的问题!由于 ,现实世界中, 计算数学 中 使用 Haskell(OCaml)和 基础数学 中 学习 代数(拼音:shù)拓扑(代数几何)的人并不多, 这导致知道范畴论的条友更是稀少。再加上悟空对于过期问题又不好好推荐,所以 一系列回答的阅读量极低! 这里打打广告!
本文链接:http://10.21taiyang.com/Health-Conditions/23131061.html
二维随机变量的(拼音:de)期望和方差转载请注明出处来源