当前位置:Hotels

初二数学因(练:yīn)式分解

2025-02-24 00:33:37Hotels

怎样学好因式分解?因式分解的要从以下几方面去学习:一、因式分解是什么?1、定义:把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式分解因式。在定义的理解上需要注意以下几方面的问题:①因式分解是针对多项式而言的,只有多项式才能因式分解

怎样学好因式分解?

因式分解的要从以下几方面去学习:

亚博体育

一、因式分解是什么?

1、定义:把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式分解因式。

在定义的理解上需要注意以下几方面的问题(读:tí):

①因式分【pinyin:fēn】解是针对多项式而言的,只有多项式才能因式分解。

②因式分解是恒{练:héng}等变化,结果要写成整式乘积的形式;

③因式分解必须分解到每个因式不能在分(练:fēn)解为止。

2、因(练:yīn)式分解与整式乘法的关系:

因式分解是整式乘法的逆过程, 利用整式乘法的运算可以检验因式分解的结果是【拼音:shì】否{读:fǒu}正确。

在这各(pinyin:gè)知识点下通常会考察两种题型:

1、判断一个等式[shì]的变形是否是因式分解:

2、因式分解与分式乘法的关系[繁:係]:

二、如何对一个整式进行因式分解

因式分解主要有提公因式法和公式法两种

1、提公因式法

1)公因式是什么:多项式(shì)各项都含有的相同因式。

注: 公约式可以是数字、字zì 母,也可以是多项式。

2)如何找公因(读:yīn)式:

直播吧

①确定系数,若各项系数都为整数,应提取各项系【繁体:係】数的最大公[拼音:gōng]约数;当多项式的各项系数为分数时,公因数式的系数为分数,分母取各项系数中分母的最小公倍数,分子取各项系数中分子的最大公约数;

②确定相同字母或整式,公因式应取多项式各项中(pinyin:zhōng)相同的字母或整式。

③确定公因式中相同字母的指数,取{pinyin:qǔ}相【xiāng】同字母《pinyin:mǔ》指数的最小值为公因式中此字母的指数。

④综合《繁体:閤》前三步,确定公因式。

注: 如果多{duō}项式中含有相同的多皇冠体育项式,应将其看成整体,不要拆开;

若底数互为相(pinyin:xiāng)反数的幂,要将相反数统一成相等的数。

3)、提公因式【拼音:shì】法如何操作zuò :如果一个多项式的各项含有公因式,那么就把这个公因式提出来,从而将多项式化成两个因式乘积的形【pinyin:xíng】式。

注: 首项系数为负时,一般先提出(繁:齣)“-”,使括号内的首项系数为正,当提《练:tí》出“-”时,括号里的每项(繁体:項)都要变号。

多项式有几项,提公因式shì 后所剩的因式也有几项,可以检验是否漏项。

某项与公因式相同时,该项保留因式是1,而不是(读:shì)0.

本知识点下常见的《练:de》题型有以下三种:

1)、提公因式法《拼音:fǎ》分解因式

2)、 利【拼音:lì】用提公因式法求代数式的值

在求值问题,当题目所给条件不容易求出所需字母的取值时,可以通过对式子的恰当变形,构造含有已知条件中的式子的代数式,然后运用整体代入法fǎ 求出代【拼音:dài】数式的{练:de}值。

3)、利用提公因式(拼音:shì)法解答数字问题

2、公式[练:shì]法

1)平方差公式:两个数的平方差等于这两个数的和与这两个数的差的{练:de}积。

注: 能用平方差公式[拼音:shì]分解的因式有两项,这两项的符号相【练:xiāng】反,且都能化成平(píng)方的形式。

公式亚博体育中的a、b可kě 以是单项式,也可以是多项式。

2)完全quán 平方公式:两个数的平方和加上(或减去)这《繁:這》两个数的积的2倍等于{练:yú}这两个数的和(或)差的平方。

注: 能用平方差公式分解的因式有三项,其中两项分别是两《繁:兩》个数(或式子)的平方,且这两项的符号相同,剩下的一项《繁体:項》是这两个数{pinyin:shù}(或式子)的积的2倍,正负号均可。

公式中的a、b可以{yǐ}是单项式,也可以是多项式。

3)、除过平方差chà 公式和完全平方公式外,我们还会用到以下几个公式:

本知识点下常见的题型{读:xíng}有以下几种:

1)、平《pinyin:píng》方差公式、完全平方公式的判定

2)、 用公式法因{yīn}式分解:

澳门新葡京

注意每种公式的【de】应用条件,根据题目的特征,灵活变形,合理选择。

3)、化《pinyin:huà》简求值

用公式shì 法化简求值:有直接代入和整体代入两种方法

4)、用公式法解[读:jiě]答数字问题,计算和证明。

3、综(繁体:綜)合法:

综合法:对一个多项式进行因式分解,往往需要多次分解,需要综合运[繁:運]用到我们所学的提公{练:gōng}因式法和《pinyin:hé》公式法,或多次利用公式进行分解。

分解因式的《pinyin:de》一般步骤可归纳为:“一提、二套、三查”。

一提:先看是否有【pinyin:yǒu】公因式,如果有公因式,应先提取公因式;

二套:再考察能否fǒu 运用公式法分解因式;运用公式法[拼音:fǎ],首先观察项数,若为二项式,则考虑用平方差公式;若为三项式,则考虑用完全平方公式。

澳门金沙三查:分解因式结束后,要检查其结(繁体:結)果是否正确,是否分解彻底。

在分解因式的过程中要注意观察题(繁体:題)目的特征,灵活变形,选择合理的方法。

4、方fāng 法拓展:

1)分组分解法:一个多项式的各项既没有公因式可提{读:tí},也不能直接运【pinyin:yùn】用公式分解,但是经过恰当的分组重新组合后,能提取公因式或利用公式进行因式分解。

注: 分组分解法分关键在于正确地分组,要保证分组后的每组能提取公因娱乐城式或运用公式法因式shì 分解。

2)十字相乘法:分别将二次(练:cì)项系数,常数项系数分解因数,并竖着写,二次项系数为正,若为负,先提取“-”变负为(繁:爲)正,再写成两个数相《pinyin:xiāng》乘的形式;将常数项系数化为两数相乘的形式,若常数项为正,则化成的两数的符号相同,与一次项符号一致;若常数项为负,则化成的两数的符号相反,哪一个数与二次项系数所分的数十字交叉的乘积较大,哪一个数的符号就与一次(pinyin:cì)项符号一致,另一个数的符号与一次项符号相反。

注:只有系数满足以上条件的二次三项式才能利用十字相乘法(fǎ)因式分解。

3)换元法:当所给的多项式比较复杂难以直接分解因式时,可以将其中的某几项相同的代数式换用另一个[拼音:gè]字母来替代,简化多项式再进行因式(shì)分【练:fēn】解,最后再还原。

世界杯下注

4)添项、拆项、配方法:在分解因数时,发现题目中所给的多项式不能直接分解因式,通过对题目的观察,灵活变形,将其中{练:zhōng}的某项或某几项灵活【pinyin:huó】拆分,或适当添加(减去)某项,再经过分组(繁:組),使多项式能满足因式分解的条件。

三、因式分解怎么用

通过对一个整式进行因式分解,可以进行化简、求值、证明、计算,后期分式的学习是以因式分解为基础的。

因式分解的学习最重要的是要学会对一个整式进行因式分解,除过基本的题型之(练:zhī)外,极速赛车/北京赛车也会有一些综合运用的题目:

题型1 因式【拼音:shì】分解开放性命题

题型2 因式分解与三角【拼音:jiǎo】形知识的综合

三角形的三边关guān 系以及平方的非负性是我们处理这类题目的核心知识点。

题型3 利用平方的非负性求字母取【qǔ】值

题型{pinyin:xíng}4 探究性题目

以上就是shì 因式分解专题的知识点和常见题型。

本文链接:http://10.21taiyang.com/Hotels/7841507.html
初二数学因(练:yīn)式分解转载请注明出处来源